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Abstmi: l&e active site topogqhy of the hydroxylase enzyme ofhhrtierella isabellina AKX 42613, 
which carries out the benylic hydroxylation of tolwq ethyls and related compolmds has been 
explored Qemting in a tile cell bioiransfomntion mode, this enzyme shows selekivity in sub&ate 
processing based on $e nanaq position and size of substitueat side chains close to tbe site of hydoxylation 
The results of d&emu&ion of the yield and stereo&emisiry of hydroxylation of over twnty sub&&es 
andpotentialsubstrates,togetherwithpleviouslyreportedda$,havebeenusedto~inactivesite 
model for the benzylic hydroxylase enzyme. 

‘Ihe fungus Ah-tiereZlu isabellna ATCC 42613 caries out the benzylic hydmxylation of simple 

aromatic hy- such as toluen~’ and ethykzlzenq~4 in addition to p&kning similar 

bio&msSnmations with more complex hydrocarbonss and other substituted aromatic compounds.~ The 

enzyme which performs this reaction has the chamct&stics of a cyt.P-450 dependent -VS=ase? 

We have studied the me&an&tic details of this enqqz4 and have propsed a reaction route (Figure 1) 

involving the initial removal of an electron lkm the aromatic ring by an activated imn-oxygen species of 

the enzymek cofactor. This oxidation is followed by loss of a proton fiwm the resulting radical cation to 

genemtc a benzylic radical, which is then captwed by a process involving homolytic cleavage of the- 

col?1&9simn-oxygenbondtogenendethc~. Thcessentialfeatuteofthisme&mismisits 

stepwisenature,withcansequent sepration of the events of oxidation (electron xemoval), hydrogen loss, 

and product fknation. This is x&xted in the obsewation that the stenxhemistriea of hydrogen removal 

(specifically ~II+R)~~~ and product formation (generally giving R alcohol with e.e. 25-35%)’ are clearly 

independent of each other, a phenomenon which has also been noted by othexs for the enzymic cyt.P-450 

catalyzed benzylic hydroxylation of e&y1 benzene.” 

As part of our continuing investigation of the biotransfxmations of organic compounds by 

Abtierella isabellitq 148~9J1 we have examinedalargemanberofammaticsuMmtes. Oneamqwnce 

of this endeavour has been the emergence of data which can u&Idly de&e the sub&ate specificity of the 

benzylic hydroxylase enzyme. We have not atkmpkd to isolate this enzyme: the isolation of such 

nlemww qt. P-450 mono-oxygenases km fungal zunrcesisfhulghtwith~~,aildinspite 

of prelii results for stemid hydroxylating mzymes, no synktically u&kl pxpamticm has yet been 
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Scheme 1. Proposed route for benzylic hydroxylation by M. isabellina 

+ Fe4+0- 

I _*H+ I H+ 

+ Fe4+0H 

~btained’~‘~ UseM models for tigal hydroxylating enzymes have nevertheiess been developed, notably 

those for hydsoxylaton of amides by &WI&U .w@u~ce~,~~ and the hydroxylation of steroids by 

&lone&~ &cm-a and other fungi. I5 Active site models have also been propoxd for the hydnxqlation of 

monoteqxws by Bacillus fCZTeus,'6 and odenx&ylations u-mied out by streptw gri.sf?lS.” 

‘Ihebiotransformations~formedaspartof~presentstudyarelistedinTable1. Allprodwts 

wcreidentifiedbyroutinespectralanalysis(seeEqx&wM): inthecaseofpmductsderivedfixnn2- 

4, the regiochen&y of hydroxylation was wnfhmedby’~cnmranalysisoftheplxxil&of oxidationto 

thecorrespondingketone. The ~ofproductsderived~m6-8,11,and12werederivedby 

comparixm of spectral data with published values. The inability ofM isubeZZim to hydmxylate 5,9, and 

10is~ontherecoveryofthe~ofthes~~togetherwithafail~toisolatemetabolic 

pmductsatalevelof21%oftheaddedsubsiWe. 

It is apparent I?om the data presented in Table 1 that, whereas theM isubeZlim bezuylic 

hydroxylase will accept phenylcyclobutane (1) as sub&&e, it is unable to conveat tbe higher 

pbenylcycloalkanes 2 - 4, these substrates beii hydnxylated exclusively elsewhere in the molecule. The 

existence of other hydroxylase enzymes in M isabellim is thought to he responsible for the formation of 

thenon-bau;ylicaloahols~m1-4:thisviavisstrengthenedbythefactthassimilar~have 

previously been found as a result of bioumversion of phenyl and substituted phenylcycloalkanesby a 

variety of micDorganisnq’*“~ suggesting the existence of enzymes capable of hydnxylating compounds 

suchasl-4atanon-bexqlicsite. OthernSxint~summa&&inTable 1 arethetihn-eof 

the M isubeha hydroxylase to hydroxylate 2-phenylbutane (5) in appreciable yield, remarkable in view 
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Table 1. Products of biotransformation by M. isabellina 

SUBSTRATE PRODUCTS (YIELD, STEREOCRRMISTRY, XMANTIO~RIC EXCESS) 

OH 

la f18) 
lb (4, cis) 

1~ (4, transf 

OH 
2a (1, cis) 

2b (2, trans) 

&OH 3a (13, trans) 

*OH 444b (2, cis/trans) 

&5a (trace) & 5b (tracd 

OH 

OH 

7 7a (5, R, 30) 
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SUBSTRATE PRODUCTS (YIELD, STEREOCHEMISTRY, EUANTIOMBRIC EXCESS) 

8 

9 

11 

0 

13 

OH 

cc 0 8a (7, S, 25) 8b (3) 

None 

None 

co” 12a (10) 

OH 

& 13a (trace) 

Table 1, continued 
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of the very efficient benzylic hydmxylation (85% conversion) of 2-phenylpropane to 2-phenyl-2-pmpanol 

by this organisr~~ the regioselective hy~~l~~ of 6 at the seco&ry benzylic site, and the f&ma&m 

of 8a (with pr&om&it R configuration), although o~&&ethylbenzeue is not aaqted by the enzyme? 

Ihe formation of hydroxyphenols hrn 11 and 12 may be rationalized with the knowledge that U 

isubell~na carries out the reduction of carbonyl gmups in an inzversible manner?J’~ l’hus reduction of 

dihydKICoUmarill (12) to the lactol, followed by hydrolysis and reduction of the re&ting aldehyde could 

give rise to lla, while a similar se&mce of events following benzylic hy~~l~~ of 12 at C-1 would 

produce 12a. 

The data from Table 1, together with previously qorted bio&msf&ons performed by U 

isubdha, ATCC 42613,‘5~‘*, have been summa&zd in Tables 2 and 3 under the heading of acceptable 

(Table 2) sod non-accqtable (Table 3) subs&at- with the ~ site of ~~~1~~ indid by 

arrows where appropriate. Phenyl cyclopropane is included in Table 2: even though no hydroxylation 

~wereisol~firomthis~5itappearsto~the~vesiteofthe~and~asa 

metabolically activated suicide sub&a&, binding to the enzyme following a cy&propyl-ally1 radical 

Q’* rearrangement and preventing further sub&ate turnover. Evidence fa this view was obtained by a 

sequential ~~ invoIving first ~l~cl~ followed by ethylbemezz no l-~1~01 

could be detected in the biotransfbrmation extract. A similar sequence of experiments involving 

ph~yk~clobutane followed by etbylbemzne gave rise to the formation of l-phenylezbanol in the usual 

manner, albeit in reduced yield, a factar which may be attributed to cell death during the lengthy 

bi~f~~ pe&xi (144 hours) necessitated by such expeaimetlts. 

?hesalientf&uresofTables2and3whichledtothedevelopmentofthemodelpmpasedforthe 

active site of the A4 isubehu hydroxylase are these: the inability of the enzyme to process l- 

ethylnaphthalene or 2-ethylanthracen~ althougb 2-ethylnaphthatene is a good sub&&q the limit of S in 

accqtable ring size of p~yl~cl~e substrates, the inability of the v to hydroxylate 2- 

ph~yl~ or o&o- substituted ethylbenz~~es other than 2-ethyltol~ and only then with pe&&ation 

of stereochemistxy; and the efficient hydroxylation of ben~fbsed cyck&kan~ such as indane or t&alin, 

but lack of hydroxylation of larger molecules such as fluorene and acenaphthene. ti active site model 

propos&inFigurelaccountsforallth ese obser~&ons, and involves a specific phenyl binding pock& 

close to a sterically cur&mined site X for electron removal and processing of the radicaI cation 

intermediate (CL Scheme 1). Among potential subs&&z with tertiary benzylic cen&s, the site is able to 

accept only 2-phenylpropane, phenylcyclopropane, and (marginally) phenylcyclobutane: the emve 

spatial requirements of the confinmationally flexible 2-phenylbutane and o&o-di&hylbenzene preclude 

their acceptance into the active site. l-M~y~~ is hydroxylated only at C-4 for the same w and 

althougb 2-ethyltoluene is a sub&ate, its biig into the active site is obviously abnomul in view of the 

formation of product @a) with predominant s D , inumlrasttotheothex+eubiquitous 
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Table 2. Acceptable substrates for M. isabellina hydroxylase 

Table 3. Non-acceptable substrates for M. isabellina hydroxylase 
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Figure 1. Active site model for M. isabellina hydroxylase 

6.5 1.5 3.0 

-- 

A: aromatic binding pocket 

B: aliphatic binding region 

x: oxidation centre 

Substrate binding to M. isabellina hydroxylase 
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prcx&tion of R benzylic alcohols by M isab&nu catal- biotransfbnnations of aromatic hydrocarbons. 

The dimensional limits of Figure 1 (A) are derived f+om molecular modelling studies of the 

&vent sub&rates and potential subs&&s using Tripos Associates Alchen$ x&ware. The dimensions 

labelled x, y, a,and b are cmently undefined, but the absolute staeochemistry of the enzyme’s action 

dicztates that the oxidation centre X must lie above the mean plane of the aromatic ring in order to abstmct 

the pn+R hydrogen (H’) and generate product of R chirality. Further refinement of the spatial limitations 

of the active site using larger benzo-fused cycloalkanes and other substituted tetralins is necessary, and the 

role of heteroatoms in determining the regiospecificity of hydroxylation remains to be clarified, but Figure 

1 nevertheless serves as the first working model for the prediction of the efficiency and regiochemislxy of 

benzylic hydroxylation by M isabelha. 

EIrpkmtal 

Apparatus, materials, and methods instrumenta methods and routine analytical procedures were those 

previously described5 Gas chromatographic analysis was performed on an HP5890 in&ument fitted with 

a J&W Scientific DBl capillary column. Ahtierella isabelhm ATCC 42613 (identical to NRRL 1757) 

was maintained on 4% malt agar slopes, grown at 27’C and stored at 4°C. Biotransformations were 

performed and products isolated and purified using the standard&d procedures described elscwhcrc!~ 

Preparation of substrates: the substrates used were commercial samples, with the exception of the 

phenylcycloalkan~ 1,2, and 4; these were prepared by a common mute described below for the 

preparation of phenylcyclopentane. A solution of cyclopentanone (12.62 g, 0.15 mole) in ether (50 

mL)was added slowly to an ice-cooled solution of phenyl magnesium bromide in ether (0.15 mole). ‘Ihe 

resultingmixhazwasstirredatroomtempemUe for 1.5 h: conventional work-up afforded l- 

phenylcyclopentanol(87%), which was dissolved in ethyl acetate (250 mL) containing cont. hydrochloric 

acid (4 drops), and the resulting solution placed in a 500 rnL, Parr hydrogenation vessel together with lg of 

10% palladium on charcoal. Hydrogenation was carried out at 25-40 psig for 2h, after which the catalyst 

was removed by filtration, the filtrate washed (satd. NaHCQ), dried and evaporated. Distillation (bp 

73”C, lmm; lit.% bp 118”C, 25mm) gave the final product 2 in an overall yield of 71% f?orn the starting 

ketone: PMR: 6 1.3-2.1 (Se m, CI$), 2.9-3.1 (H-I, q, H-l), 7.0-7.6 (5H, m, aromatic H’s) ppm; Ch4R 6 

25.6 (2C), 34.4 (2C), 46.0, 125.7, 127.1 (2C), 128.2 (2C), and 146.6 ppm. Also prepared by this route 

were phenylcyclobutane (1, overall 82O), bp 88-9O’C, 25mm (lit?’ bp 89-91“C, 25mm): Ph4R 6 1.8-2.5 

(6H, rn, CY,s), 3.56 (El, quintet, H-l), and 7.1-7.45 (5@ m, aromatic Hs) pprn; CMR 6 18.3 (C-3), 

29_8(C-2,-4), 40&-l), 125.9(C-4’), 126.3, 128.2 (aromatic Cs) and 146.3 (C-l’) ppm, and 

phenylcycloheptane (4, overall 770/o), bp 77”C, lmm (lit.% bp 114S”c, 1Omm): PMR 6 1.5-2.0 (12H, m, 

CH;s), 2.65 (lH, m, H-l), and 7.1-7.4 (SH, m, aromatic H’s) ppm; CMRG 27.3 (2C, C-4,-5), 28.0 (2C, C- 

3,-6), 36.8 (2C, C-2,-7), 47.1 (C-l), 125.9, 126.8 (2C), 128.3 (2C), and 146.8 (C-l’) ppm. 
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Incubations with M isabellina: these were ptxformed hy the standard procedure refaacd ahove. 

Yields and (where appqkte) enantiomeric exceses of prodwts are listed in Table 1. All yields refer to 

isolated,purifiedmaterial. ChamcWScspechaldataoftheprodwtsarelistedhelowundtrthe 

approriate suMrate headings. 

I-Phenylcyclohutanol (la); oil; PMR 6 1.5-2.7 (6H, m, C&k), 7.2-7.5 (5H, m, aromatic H’s) ppnq CMRG 

13.1 (C-3), 36.6 (2C, C-2,-4), 115.1 (Gl), 125.1, 127.2, 128.4 (aromatic Cs), and 146.0 (C-l’) ppnq MS 

m’z(%) 148(M,8), 131(8), 120(55), 104(100), 91(5), 78(12). cSrurs-3-Phenylcyclohutanol (lb + lc); 

oil; PMR 6 2.0-3.0 (4H, C&k), 3.63.8 (H-I, m, H-3), 4.3 (O.SH, quintent, H-l), 4.6 (O.SH, quint&, H-l), 

and 7.2-7.4 (5H, m, aromatic Hs) ppm; CMR6 29.0132.9 (C-3), 39.W10.9 (C-2), 63.4rS6.2 (C-l), 125.8/ 

126.0 (CA’), 126.6, 128.4 (C-2’,-3’), and 145.2 (C-l’) ppm; h4S mk(%) 148(M+,2), 130(5), 104(100), 

91(25), 78(10). 

ctitia-3-Phenylcyclopentanol (2d2b): oil; PMR 6 1.5-2.5 (6H, m, (X&k), 3.2-3.4 (lH, m, H-3), 4.3-4.6 

(lH, m, H-l), and 7.1-7.4 (5H, m, aromatic Hs) ppm; Ch4R& 32.6 (CA), 35.7/36.0 (C-5), 42.9 (C-3), 

44.0144.3 (C-2), 73.7 (C-l), 125.9 (C-4’), 127.0, 128.3 (C-2’,-3’), 127.1 (Gl’), 145.5 (C-l’) ppm; MS 

m/z@) 162(M ‘,18), 144(73), 129(85), 120(100), 105(35), 91(30), 77(20). Jones’ oxidation of2a/2b (50 

mg) aflkrded 3-phenylcyclopentanone in 85% yield: oil; CMR 6 31.1 (CA), 39.8 (C-5), 42.2 (C-3), 45.7 

(C-2), 126.7, 128.4, 143.0 (ammatic C’s), and 218.3 (C-l) ppnq MS dz(%) 160@4+,69), 131(12), 117(32), 

104(100). 

trans-4-Phenylcyclohexanol (3a): mp 115-117°C (lit?’ mp 118°C); PMR 6 1.4-2.6 (8H, m, Cws), 3.6-3.8 

(lH, m, H-4), and 7.1-7.4 (5H, m, aromatic Hs) ppm; CMR 6 32.4, (C-3), 36.0 (C-2), 43.4 (C-4), 70.6 

(C-l), 126.0 (C-4’), 126.7, 128.3 (C-2’,-3’), and 145.2 (C-l’) ppm (lita s, 32.7, 35.5, 44.5, 70.1 ppm); MS 

m/z(o/o) 176(M+,20), 158(100), 143(69), 130(54), 117(50), 104(79), 91(65), 77(21). Jones’ oxidation of3a 

(50 mg) tikded aflkded 4-phenylcyclohexanone (44 mg): oil; CMR6 33.9 (C-3,-5), 41.3 (C-2,-6), 42.7 

(C-4), 126.5, 126.6, 128.6, 144.7 (aromatic C’s), and 211.0 (C-l) ppm; MS, M+ 174. 

phenvlcvcloheDtane1 

cis/tmns_4_Phenylcycloheptanol (4aI4b): oil; PMR 6 1.3-2.2 (lOH, m, CQ’s), 2.5-2.8 (H-I, m, H-4), 3.9-4.1 

(lH, m, H-l), and 7.1-7.4 (SH, m, aromatic H’s) ppm; CMR 6 21.4/23.3 (C-6), 29.4 /31.4 (G3), 35.7/36.5 

(C-7), 37.0137.6, 37.V37.8 (C-2,-5), 46.7i47.0 (CA), 71.5172.7 (C-l), 125.9, 126.6, 128.3 (aromatic C’s), 

and 149.2 (C-1’) ppm; MS m’*%) 190@4+,45), 172(18), 144(76), 129(38), 118(100), 104(76), 91(88). 

Jones’ oxidation of 4a/4b (50 mg) gave 4-phenylcyclohqtanone (42 mg): oil; CMR6 23.7 (C-6), 31.8 (C- 

3), 38.3 (C-5), 42.8, 43.7 (C-2,-7), 48.6 (C-4), 126.1, 126.4, 128.4 (aromatic C’s), 147.5 (Gl’), and 214.5 

(C-l) ppm; MS Ivr 188. 
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2-Phc~1yl-2-butanol @I) and 3-phmyl-2-butanol(5b) were dmtified in tmcx mmutgs (I 1%) by 

comparisonwith~cstandardsingcanalysisofthebiotransfarnnation~butcouldnosbe 

obtained in suflicient quantity and purity fix spectml and cm@uational ana+. 

c~~~4~yl-l,53,~~y~l-~l(6a + 6b): oil; PMR 6 1.19 and 1.24 (total 3H, each d, 

CHj), 1.4-2.0 (4IE, m, CK’s), 2.6-2.9 (W m, I-M), 4.70 and 5.30 (total H-I, each t, H-l), and 7.07.6 (4H, 

m, amnatic Hs) pp111; CMR 6 23.m.5 (q), XM27.2 (C-3), 29.409.7 (G2), 32.3/32.5@4), 68.468.6 

(C-l), 127.1 (20, 128.0, 128.2 (G5,-8), 138.5 (G8a), 142.0 (CA) ppm (lip Gl 69.0(c)/ 69.2(t), G2 

29.8@‘30.3(t), G3 27.20/27.4(t), C-4 32.5(c)/32.6@)). MS mk(%) 162(M+,32), 144(100), 129(51), 

117(43), 104(55), 91(47). 

5-Hydroxy-5,6,7JMctrahydroquinoline (7a): oil; PMR 6 1.7-2.3 (4H, m, H-6,-7), 2.75-3.15 (2H, m, H-8), 

3.60 (El, br.s, exchanges 40, OH) 4.70 (lH, m, H-5), and 7.15, 7.70, and 8.45 (each lH, m, aromatic 

Hs) ppm; CMR 6 18.4 (G7), 30.8, 31.7 (C-6,-8), 67.3 (G5), 122.3 (C-3), 136.5 (CA), 139.2 (C-4), 

145.5 (C-2) and 155.7 (G8a) ppm; MS m/21%) 149(M+,22), 131(100); [aID -12.3“ (c = 0.12, ethanol), ee 

28%,Rconfiguration,basedon[a],+44 fortheSemntiomer~” ee33%byPMRdetaminatian. 

l-(2’-Mcthylphenyl>l @a): oil; PMR 6 1.40 OH, d, H-2), 2.3 (3H, s, aryl-CX&), 5.10 (lH, q, H-l), 

7.s7.4 (4& m, aromatic IFS) ppnq [a&, -14 (c = 0.4, ethanol), ee 25%, S confi8uration based on Djo + 

55.4 (R confi8uration)?1 2-Ethylbemyl alcohol (8b): oil; PMR 6 1.45 (3H, t, C&), 2.70 (2H, q, CK), 

4.70 (w, & Q&OH), 7.0-7.4 (4fi m, ammatic Hs) ppm 

3-Q’-HydroxyphenyQpmpanol (lla): oil; PMR 6 2.5 (2H, m, H-2), 3.1 (26 t, H-3), 3.9 (2H, t, H-l), 6.& 

7.5 (4H, m, aromatic Hs); MS m’z(%) 152(M+,83), 134(77), 107(100), 91(70), 77(62). 

2-(2’-Hydroxyme&ylphenyQzthanol(12a): oil; PMR 6 3.1 @-I, t, H-2), 4.05 (w t, H-l), 4.85 (2H, s, 

CfEoH), and 7.3-7.6 (4H, m, amnatic H’s) ppm; CMRa 35.0 (C-2), 62.7, 63.0 (C-l and C@OH), 126.7, 

128.5, 129.7, 130.0, 138.1 and 139.3 (aromatic C’s) ppm; MS &z(YY) 152w,3), 134(20), 104(100), 

91(37), 77(38). 

2-EthvlanthraceneixQ 

l-(2’-AnUuacenyl)eU1anol(l3a) was identified in imubation cxtmcts from 13 by coqxkon OfGCtIaces 

with those of authentic samples (&mated yield ca O.lO/o), hut could not he obtained in sticient quantity 

and purity for spa&al md umfiguratiod analysis. 
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sequential inchtim of phenylcyclojnqane followed by ethylbcauuq and phenylcyclobutane 

followed by ethylbenzme were carried out as follows: the fimgal mycelia recovered fiun the incuMion 

of M isabellina with the initial d was tedistributed Over 15 IL E&ntneyer flash each umtaining 

250 mL of distilled water, and then a sol&on of ethylbenzene (1 g) in 95% e&an01 (30 mL) added at the 

rateof2mLperflask. ‘Iheflaskswerestopperedintheusualwayandretumedtotherotaryshakerfora 

further72h,afterwhichtimeproductisolationandcharateniatinwerecarriedoutintheusualtllanner. 

From M isabeha recovmed hrn phenylcylopropane biotransformation, no detectable conversion of ethyl 

benzene to 1-phenylethanol was observed. M isabelha remveml tirn biotransformation of 

phenylcyclobutane gave l-phenylethanol(O.15 g 14%), [c&, +ll.O (e.e. 26%): 

This work was tided by the Natural Sciences and Engineerins F&sear& Council of Gmada. We are also 

grateful to Mr. T. Jones for assistance in squiring spectml data, 
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